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We present a new method of using Pad6 approximants to numerically continue a 
function for which the only obtainable representation consists of the first few terms 
of a series, as in the case where a curve is fitted to experimental data. The procedure 
yields good results, but no assessment has been made as to its stability under small 
perturbations in the values of the coefficients of the original series. 

In many areas of physics [l-4], mathematics [5-IO], seismology [ll], and 
engineering [12-141, the first few terms in the series representation of a quantity of 
interest are used to calculate its Pade approximants. These in turn are used to 
locate its poles and zeros which determine the characteristics of the function. All 
these applications share a common feature: the coefficients of the series represen- 
tation have been derived from theoretical considerations. In this note we suggest 
that PadC approximants may be used to advantage to obtain a functional represen- 
tation of a physical quantity which is known only by its experimentally determined 
values at a set of discrete points on a limited interval along the real axis. 

It is customary in such cases to employ some sort of curve fitting procedure. 
However, the representation thus obtained can rarely be extrapolated with confi- 
dence. To be able to do so requires some knowledge of the poles and zeros of the 
function. One method of locating them is to calculate the Pad& approximants 
directly from the fitted representation. We shall call these the direct approximants. 
An alternate method is to convert the fitted representation into a meromorphic 
function by forming its Laplace transform and then obtaining the Pade 
approximants to the Laplace transform. We shall call these the indirect approx- 
imants. We suggest that inverting the indirect approximants yields a representation 
which is more accurate than the direct approximants and can be extrapolated with 
greater confidence. The procedure is essentially that of approximating empirical 
data by a linear combination of exponentials [I 5, 161. 
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PROCEDURE 

Let the fitted function be 

f(x) = t akxk. 
k=O 

A term by term Laplace transformation gives 

F(s) = (l/s) : b/Sk, bk = k! Llk. 
k=O 

(2) 

For ease of computation, it is convenient to introduce the variable u = l/s, 
enabling the summation in the equation above to be written 

I’(C) = t bkUk. 
k=O 

(3) 

We recall that the [it4, NJ PadC approximant P&x) to &a) is given by the ratio 
&(x)/&(x), where AM(x) and I&(x) are polynomials of degree M and N, 
respectively. They are defined through the relationship 

&ka-(x> - AM(X) = 0 + 0(x M+N+l 
>* (4) 

The coefficients pm and qn of the two polynomials can be found by solving the 
system of equations 

zoqTbs-, =ps, s = 0, I,2 ,...) &f, 

C qA-, = 0, s = M + 1, M + 2, M + 3 ,..., M + N. (6) 
t-0 

There is no loss of generality in setting B(0) = 1. 
The approximants [M, N], to P(D) are then found. Transforming back to s gives 

the approximants 

W’, N’ls = WW, No. (7) 

Having obtained the Pad6 approximants it is a simple matter to invert them using 
partial fractions. 

EXAMPLE. Suppose that somehow we have obtained only the fist four terms 
in I,(x), the modified zero-order Bessel function of the first kind. 

I,(x) M f(x) = 1 + 0.25~~ + 0.0156x4 + 0.00043~~. (8) 
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Then 

and 

F(s) = (l/X)(1 + 0.5/9 + 0.37/s* + 0.31/&P), (9) 

P(u) = 1 + 0.5a2 + 0.37a4 + 0.3106. 

The first two approximants to p(o) are 

[O, 21, = l/(1 - 0.509, 

[2, 21, = (1 - 0.25a2)/(1 - 0.7502), 

from which, 

(10) 

(11) 

(12) 

(l/S)[O, 21, = s/(s” - 0.5) = [l, 21, ) 

(l/s)[2, 210 = (s2 - 0.25)/(s3 - 0.75s) = [2, 31S. 

These indirect approximants to f(x) are readily inverted, yielding 

(13) 

(14) 

and 
f12(x) = cosh(x/21j2) (15) 

h3(x) = [2 cosh(x31/2/2) + 1]/3. (16) 

In Fig. 1 are shown plots off,,(x), h3( x ) , andf,,(x) versus a plot of I,(x). It is 
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FIG. 1. Three indirect approximants to I,(x). 
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remarkable how good the approximations are, even though only four nonzero 
terms have been used. For comparison, a few direct approximants tof(x) are given 
below. 

[0, 21, = l/(1 - 0.25x2), (17) 

[2, 21, = (1 + 0.312x2)/(1 - 0.0625x2), (18) 

[2, 41, = (1 + 0. 175x2)/(1 - 0.074x2 + 0.00289x4). (1% 

The first two of these have poles at x = 2 and x = 4, respectively, and clearly 
do not provide a good representation. The third has four complex poles located at 
f3.9 f i1.7. Evaluation of [2, 410 shows a monotonic increase up to x = 3.6 at 
which point its value is 81.88 and then at x = 3.7 it has dropped steeply to -243 
after which it increases slowly. Note that inversion of the indirect approximants 
provides a very much better representation than the direct approximants even 
though both derive from the same expression. 

As a second example consider the first few terms in J,,(x), the zero order Bessel 
function of the first kind. 

J,(x) M f(x) = 1 - 0.25x2 + 0.1 56x4 - 0.00043~~. (20) 

As the right-hand side of Eq. (20) can be obtained from Eq. (8) by replacing x by ix, 
the results pertaining to the first example can be transferred to this example by 
substituting iu for 0, in the right-hand side of Eqs. (9)-(16). In particular, Eqs. (15) 
and (16) yield for the second example, 

&(x) = cos(x/21’2), (21) 

f23(x) = [l + 2 cos(~3~/~/2)]/3. (22) 

Both these approximations show the general oscillatory behavior expected but not 
the damping. However a higher order indirect approximant, taking a few more 
terms fromf(x), is 

[4,4], = (1 + 0.7750~ + 0.0687a4)/(1 + 0.1270~ + 0.331364), (23) 

i.e., 

[4, 518 = (s4 + 0.775~~ + 0.0687)/(s5 + 0.127~~ + 0.3313s). (24) 

Inverting this givesf,,(x) which is plotted in Fig. 2 versus a plot of J,(x). The agree- 
ment is again good. 
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FIG. 2. One direct and two indirect approximants to J,(x). 

For comparison, the direct approximants are, 

[O, 21, = l/(1 + 0.25x2), (25) 
[2, 21Z = (1 - 0. 187x2)/(1 + 0.063x2), (26) 

[2,4], = (1 - 0.176x2)/(1 + 0.074~~ + 0.00289x4). (27) 

The first of these approximants decreases monotonically, asymptotically approach- 
ing zero. The next approximant keeps getting smaller, becomes negative and stays 
negative. The third approximant becomes zero at about x = 2.3 which is very 
close to the first zero of J,,(x) but it keeps getting more negative for a long time 
before it turns over and asymptotically approaches zero from below. Inasmuch as it 
locates the first zero of J,(x) it is a good representation but it does not show any 
oscillation. It is necessary to go as high as [6, 61, before the first reasonably good 
representation is obtained. This is shown in Fig. 2. 

We see that for both these examples, inverting the indirect approximant to a 
truncated series representation provides a very good approximate way of numeri- 
cally continuing a function and assessing its behavior. 

DISCUSSION AND CONCLUSIONS 

Although the procedure presented leads to good extrapolations for the examples 
shown, we have not yet examined the limitations on its applicability nor developed 
criteria to select which approximant or which diagonal of the Pade table will give 
the best results. For instance, in Fig. 2, f5,8 provides a poorer fit than fase . This 
may be related to the spurious poles which sometimes appear in certain approxi- 
mants [l]. 
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In the spirit of our approach, obtaining more terms in the original series is 
dependent on obtaining more experimental data points and we feel that this should 
lead to more accurate results. However, if the original coefficients uk be perturbed 
slightly to (lk + 6, , then clearly the location of the poles and zeros s, will be 
shifted to values S, + A ,, . Bellman [ 171 has cautioned that arbitrary small changes 
in F(S) can produce arbitrary large changes inf(x). Thus the stability question as 
well as that of convergence needs to be resolved. 

We are attempting to resolve these and other questions such as estimate of error, 
which arise in applying the method presented here to obtain a functional represen- 
tation of a physical quantity, which is valid beyond the interval on the real axis 
along which it is known only by its experimentally determined values. 
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